From 1 - 10 / 75
  • Summary of forward gravity and flexure modelling of the New Caledonia Trough to highlight temporal variations in lithospheric rigidity during its evolution.

  • Over the last fifteen years, Geoscience Australia, through its Onshore Energy Security Program, in conjunction with Primary Industries and Resources South Australia (PIRSA), the Geological Survey of New South Wales (Industry & Investment NSW), the Australian Geodynamics Cooperative Research Centre, and the Predictive Mineral Discovery Cooperative Research Centre (pmd*CRC), has acquired several deep seismic reflection profiles, which, when combined, form an east-west transect about 870 km long in southeastern Australia. The seismic data vary from low-fold, dynamite-source to higher-fold, vibroseis-source data. The combined seismic profiles, from the western Eyre Peninsula to the Darling Basin, provide a near complete cross-section of the crust across the Gawler Craton, Adelaide Rift System, Curnamona Province, Koonenberry Belt and Darling Basin. The entire region is dominated by east-dipping faults, some of which originated as basin-bounding extensional faults, but most appear also to have a thrust sense of movement overprinting the extension. In the Gawler Craton, an inferred shallow, thin-skinned thrust belt occurs to the west of an inferred thick-skinned thrust belt. The boundary between the two thrust belts, the Kalinjala Mylonite Zone, was active at least during the Kimban Orogeny, with possible extensional movement at that time. The thrust movement possibly occurred during the ~1600 Ma Olarian Orogeny.

  • This set is composed of a selection of geoscience booklets, paper models and an image set - Climate Change booklet - Time and Life Booklet - Volcanoes booklet - Earthquakes booklet - Australian Earthquakes image set - Plate Tectonics booklet - Plate tectonics 3D paper model set Suitable for secondary Year levels 7-12

  • Until recently, tectonic reconstructions have been limited by (1) the assumption that tectonic plates do not deform, or (2) the inability of software packages to simulate deformation. The assumption that plates do not deform is based on the earliest ideas about plate tectonics. This assumption has led workers dealing with plate tectonic reconstructions to introduce new micro-plates to explain the inconsistencies observed in different place circuits (e.g. the Somalian plate). However, we now know that the oceanic and continental crust deform. Therefore, tectonic reconstructions must begin to address this point, without the need to invoke more and more micro-plates to resolve inconsistencies in rigid plate circuits. The second point, that software cannot simulate plate deformation is no longer an issue after the development of Pplates. Pplates is an open-source tectonic reconstruction package that allows geologists to build both classical (rigid) plate reconstructions as well as deformable plate reconstructions. To do this, the software uses one or meshes to move data back and forth in time. Each of these meshes is deformable in order to simulate deformation of the crust. This software also allows geologists to import and deform GIS data. Here we report the initial results of a deformable reconstruction of the Australian and Antarctic plates, from the timing of rifting prior to Gondwana break-up, to the present. This reconstruction also shows the timing of major fault development in the sedimentary basins along Australia's southern margin. Future work aims to simulate development of major crustal features on the Australian and Antarctic plates, and to incorporate palaeogeographical interpretations from the sedimentary record. Our ability to simulate extensional deformation associated with continental break-up has implications for both global tectonic reconstructions as well as reconstructions of individual sedimentary basins

  • This record outlines models for the tectonic evolution of Australian Proterozoic terranes, and the mineral systems that are likely to have operated in particular regions at particular times.

  • Aspects of the tectonic history of Paleo- to Mesoproterozoic Australia are recorded by metasedimentary basins in the Mt Isa, Etheridge Provinces, and Coen Inlier in northern Australia and in the Curnamona Province of southern Australia. These deformed and metamorphosed basins are interpreted to have been deposited in a tectonically-linked system based on similarities in depositional ages and stratigraphy (Giles at al 2002). Neodymium isotope compositions of sediments and felsic volcanics, when combined with U-Pb geochronology, are independent data that are important tools for inferring tectonic setting, palaeogeography and sediment provenance in deformed and metamorphosed terrains.

  • Geophysical data were acquired by Australia and Japan from 1994-2002 on the deep-water continental margin offshore from Queen Mary Land, East Antarctica in the general locality of Bruce Rise. This paper presents a regional interpretation of these data and outlines the tectonic history.

  • Models for the crustal evolution of the Yilgarn Craton have changed in the last 25 years from generally autochthonous greenstone development on sialic crust (Gee et al. 1981, Groves & Batt 1984) to alloch-thonous models that highlight the importance of accretionary tectonics (Myers 1995). Recent models highlight the importance of mantle plumes and long-lived convergent margins for both Au and Ni (Barley et al. 1998). The role of sialic crust in the development of the abundant mineral systems in the Yilgarn, and Archaean cratons in general, however, remains problematic. Felsic rocks from across the Yilgarn Craton are used as crustal probes, with their geochronology, zircon inheritance and Nd isotopic character used to constrain the age and extent of basement terranes. The studies reveal a collage of crustal fragments and implicate both autochthonous and allochthonous crustal development, with increasing importance of accretionary tectonics, particularly after 2.8 Ga. The crustal evolution places significant constraints on the development of metallogenic associations.

  • The rifting history of the magma-poor conjugate margins of Australia (Great Australian Bight) and Antarctica (Terre Adélie) is still a controversial issue. In this paper, we present a model for lithosphere-scale rifting and deformation history from initial rifting to breakup, based on the interpretation of two regional conjugate seismic profiles of the margins, and the construction of a lithosphere-scale, balanced cross section, sequentially restored through time. The model scenario highlights the symmetric pattern of initial stretching resulting to pure shear at lithospheric-scale accompanied by the development of four conjugate detachments and crustal half-graben systems. This system progressively evolves to completely asymmetric shearing along a single south-dipping detachment at the scale of the lithosphere. The detachment accounts for the exhumation of the mantle part of the Australian lithosphere, and the isolation of a crustal klippe separated from the margin by a peridotite ridge. Antarctica plays the role of the upper plate with the formation of an external crustal high separated from the unstretched continental crust by a highly extended zone still active during the Australian exhumation phase. The total elongation amount of the Australian-Antarctic conjugate system reaches ~413km (61%). Elongation was partitioned through time: ~189km and ~224km during symmetric and asymmetric stages, respectively. During symmetric stage, both margins suffered relatively the same elongation accommodated by crustal stretching (~105km (45%) and ~84km (38%) for Australia and Antarctica, respectively). Again, both margins accommodated relatively the same elongation during the asymmetric stage: the Antarctic upper plate records an elongation amount of ~225km (40%) as crustal tectonic stretching, above the inferred low-angle south dipping detachment zone, whereas the Australian lower plate suffered ~206km (61%) of elongation through mantle exhumation.